Guide to machining plastic parts

Metric system

Contents

01	MCG Stock Shapes	
	Machining instructions for MCG stock shapes	3
02	Cooling Cooling plastics	4
03	Sawing Cutting tools Data sawing Troubleshooting sawing	5 6 6
04	Drilling Drilling Data drilling Troubleshooting drilling	7 8 9
05	Turning Tapping/Turning threats Turning tips Troubleshooting turning Data turning	10 11 11 12
06	Milling Data milling	13 14
07	Tolerances Best tolerances at MCG engineered solutions	15
08	Thread inserts / Deburring Thread inserts Deburring	16 16
09	General rules General rules Solution example	17 17
10	Annealing Better flatness and tighter tolerances Annealing tips Recommended annealing procedure	18 18 18
11	Summary Summary	19

Machining instructions for MCG stock shapes

The stock shapes of Mitsubishi Chemical Group (MCG) Advanced Materials Division can easily be machined on ordinary metalworking and in some cases on woodworking machines. However, there are some points, which are worth noting to obtain improved results.

- Tools must be always kept sharp and smooth; specific polymer group determine the type of tools to be used.
- Feed rates should be as high as possible.
- Tools must have sufficient clearance so that the cutting edge only comes in contact with the plastics material.
- A good swarf removal from the tool must be assured.
- Coolants should be applied for operations where plenty of heat is generated (e.g. drilling).

		JBISHI MCAL JP	
Imidized plastics	Duratron [*] Duratron Duratron [*]	TM PI	
Advanced engineering plastics	Sultron™ PPSU Duratron™ PEI* Sultron™ PSU	PEK, PEKK Ketron™ PEEK* Techtron™ PPS Fluorosint™ PTFE* PVDF, ECTFE, FEP, PFA	
General engineering plastics	Sultron™ PSU Altron™ PC Altron™ PPO PETG	Ertalythe™ PET Acetron™/ Ertacetal™ Ertalon™/ Nylatron™ PA	
Standard plastics	PMMA ABS PVC PS PS	Proteus™ PP Proteus™/Sanalite™ HDPE Proteus™ LDPE	*Available in static dissipative grades.
	Structural Parts	Semi-crystalline Wear and Structural Parts Wear Resistance - Broad Based c	hemical Resistance

Keep it cool!

Due to poor thermal conductivity and lower melting properties the main skill is to avoid heat build up and evacuate swarf. This avoids deformation, stress build up or even melting.

- When machining Polyamides, UHMW-PE and softer materials go for maximum feed and speed to get swarf away from tool and avoid swarf build up or wrap around.
- Select tools with large clearance to allow swarf evacuation and deeper cuts.
- Use milling cutters with two or three flute with higher helix.
- Try to use air blast or vacuum venturi.
- HSS works well but solid carbide is stiffer.
- Try to use air blast.
- On glass or carbon fiber use carbide, reduce speed and increase feed rates.

are ideal

Cooling plastics

Coolants are generally not required for most machining operations (not including drilling and parting off). However, for optimum surface finishes and close tolerances, nonaromatic, water soluble coolants are suggested. Spray mists and pressurized air are very effective means of cooling the cutting interface. Mineral oil based cutting fluids, although suitable for many metals and plastics, may contribute to stress cracking of amorphous plastics such as Altron[™] PC, Sultron[™] PPSU, Duratron[™] U1000 PEI, and Sultron[™] PSU.

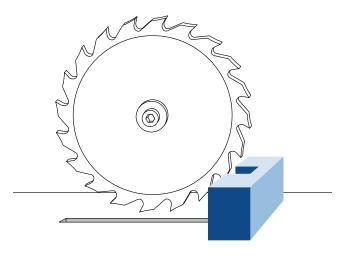
If using coolant on amorphous materials wash immediately in Isopropyl alcohol and pure water post machining!

Cutting tools

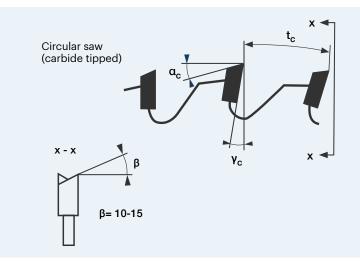
The cutting (polymer) material naturally has a serious effect on the service life of the tool. The MCG Advanced Materials Division recommends the use of HSS, carbide, diamond coated, PCD or CVD cutting tools.

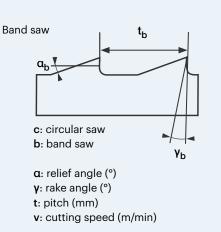
- HSS high-speed steel tools work well with many plastics.
- Carbide tools are preferred for longer production runs.
- Polycrystalline diamond (PCD) or chemical vapour deposition (CVD) diamond tip tooling are essential when machining glass and/ or carbon fiber reinforced or graphite filled materials.
- Machining Duratron[™] CU60 PBI, Duratron[™] PI or Fluorosint[™] MT-01 PTFE, polycrystalline diamond tooling provides optimum results, carbide tipped tools can then be used in case of very short production runs.

Billeting/Cutting


- Circular, band, reciprocating and guillotine saws are generally suitable for cutting thermoplastics.
- Set of teeth (clearance between teeth side and body of cutter) must be as large as possible to prevent material closing and trapping blade.
- Teeth per inch (TPI) must be suited for material:
 soft low temperature materials need low TPI
 - filled and thinner materials require higher TPI.

Reinforced materials such as Ertalon[™] 66 GF30 PA66, Duratron[™] T4301 PAI, Duratron[™] T4501 PAI, Duratron[™] T5530 PAI, Ketron[™] HPV PEEK, Ketron[™] GF30 PEEK, Ketron[™] CA30 PEEK, Techtron[™] HPV PPS, Semitron[™] ESd 410C PEI and Semitron[™] ESd 520HR PAI are preferably cut with a band saw with a tooth pitch of 4 to 6 mm (Duratron[™] CU60 PBI, Duratron[™] PI and Fluorosint[™] MT-01: 2-3 mm).


Do not use standard circular saws as this usually leads to cracks!


Clamping tools

- Circular, band, reciprocating and guillotine saws are generally suitable for cutting thermoplastics.
- Set of teeth (clearance between teeth side and body of cutter) must be as large as possible to prevent material closing and trapping blade.
- Teeth per inch (TPI) must be suited for material:
 - soft low temperature materials need low TPI
 - filled and thinner materials require higher TPI.

Data sawing

	a _c	γ _c	t _c	v _c	a _b	γ_b	t _b	v _b
Ertalon [™] PA / Nylatron [™] PA, TIVAR [™] UHMW-PE	10 - 15	0 - 15	8 - 45	1,000-3,000	25 - 40	0 - 8	4 - 10	50 - 500
Ertacetal [™] POM, Semitron [™] ESd 225 POM-C	10 - 15	0 - 15	8 - 45	1,000-3,000	25 - 40	0 - 8	4 - 10	50 - 500
Ertalyte [™] PET, Duratron [™] T4203 / 4503 PAI, Ketron [™] 1000 PEEK, Ketron [™] TX PEEK	10 - 15	0 - 15	8 - 25	1,000-3,000	25 - 40	0 - 8	4 - 10	50 - 400
Altron™ PC, Sultron [™] PPSU, Duratron [™] U1000 PEI, Sultron [™] PSU	10 - 15	0 - 15	8 - 25	1,000-3,000	25 - 40	0 - 8	4 - 6	50 - 400
Ertalon [™] 66 GF30 PA6, Duratron [™] T4301 / T4501 / T5530 PAI, Ketron [™] HPV / GF30 / CA30 / VMX PEEK, Techtron [™] HPV PPS, Semitron [™] ESd410C / 520 HR	10 - 15	0 - 15	8 - 25	1,000-3,000	25 - 40	0 - 8	4 - 6	50 - 200
Duratron [™] CU60 PBI, Duratron [™] PI, Fluorosint [™] MT-01 PTFE	10 - 15	0 - 15	8 - 25	1,000-3,000	25 - 40	0 - 8	2 - 3	25 - 100
Fluorosint [™] 135 / 207 / 500 PTFE, Semitron [™] ESd 500HR PTFE	10 - 15	0 - 15	8 - 25	1,000-3,000	25 - 40	0 - 8	4 - 6	50 - 200

Troubleshooting sawing

DIFFICULTY	MELTED SURFACE	ROUGH FINISH	BURRS AT EDGE OF CUT	CRACKING OF CHIPPING OF CORNERS	CHATTER
Common cause	 Tool dull or heel rubbing Insufficient side clearance Feed rate too slow Spindle speed too fast 	 Feed too heavy Incorrect clearance angles Sharp point on tool (slight nose radius required) Tool not mounted on center 	 No chamfer provided at sharp corners Dull tool Insufficient side clearance Lead angle not provided on tool (tool should ease out of cut gradually, not suddenly) 	 Too much positive rake on tool Tool not eased into cut (tool suddenly hits work) Dull tool Tool mounted below center 	 Too much nose radius on tool Tool not mounted solidly Material not supported properly Depth of cut too heavy (use 2 cuts)

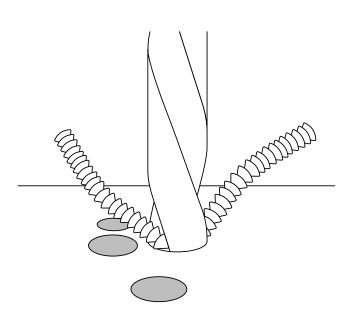
Drilling

Plastics can build up heat very easily during drilling operations, especially when hole depths are greater than twice the diameter. Therefore a cooling liquid is generally recommended.

Small diameter holes (0.5 – 25 mm diameter)

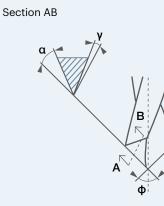
High speed steel twist drills generally work well. In order to improve heat and swarf removal, frequent pull-outs (peck-drilling) are necessary. A slow spiral (low helix) drill will allow for better swarf removal.

Large diameter holes (25 mm diameter and larger)


It is advised to use drills with a thinned web (dubbed drill) in order to reduce friction and hence heat generation. Drill large holes stepwise: a bore diameter of 50 mm e.g. should be made by drilling successively with \emptyset 12 mm and \emptyset 25 mm, then expanding the hole further with larger diameter drills with a single boring tool.

For pilot holes for internal threads always check actual cutting size of drill. Most plastics close up after drilling. This can make taps tight.

Thinning of web is recommended on larger drills



Insert drill on solid pieces with right inserts

Spade drills can be useful

Data drilling

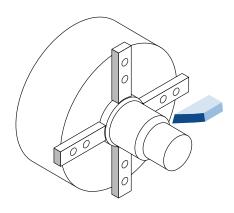
φ: top angle (°)
α: relief angle (°)
γ: rake angle (°)
s: feed (mm/rev.)
v: cutting speed (m/min)

	۵	γ	φ	S	v	MATERIAL TOOL
Ertalon [™] PA / Nylatron [™] PA, TIVAR [™] UHMW-PE	5 - 10	3 – 5	90 - 120	0.1 – 0.3	50 - 100	HSS steel or carbide
Ertacetal [™] POM, Semitron [™] ESd 225 POM-C	5 - 10	3 – 5	90 - 120	0.1 – 0.3	50 - 100	HSS steel or carbide
Ertalyte [™] PET, Duratron [™] T4203 / 4503 PAI, Ketron [™] 1000 PEEK, Ketron [™] TX PEEK	5 - 10	3 – 5	90 - 120	0.1 – 0.3	50 - 80	Carbide
Altron™ PC, Sultron [™] PPSU, Duratron [™] U1000 PEI, Sultron [™] PSU	5 - 10	3 - 5	90 - 120	0.1 – 0.3	50 - 100	Carbide
Ertalon [™] 66 GF30 PA6, Duratron [™] T4301 / T4501 / T5530 PAI, Ketron [™] HPV / GF30 / CA30 / VMX PEEK, Techtron [™] HPV PPS, Semitron [™] ESd410C / 520 HR	5 - 10	3 - 5	90 - 120	0.1 – 0.3	50 - 80	Carbide or PCD/CVD
Duratron [™] CU60 PBI, Duratron [™] PI, Fluorosint [™] MT-01 PTFE	5 – 10	3 - 5	90 - 120	0.1 – 0.3	25 - 50	Carbide or PCD/CVD
Fluorosint [™] 135 / 207 / 500 PTFE, Semitron [™] ESd 500HR PTFE	5 – 10	3 - 5	90 - 120	0.1 – 0.3	50 - 100	Carbide

Troubleshooting drilling

DIFFICULTY	TAPERED HOLE	BURNED OF MELTED SURFACE	CHIPPING OF SURFACES	CHATTER	FEED MARKS OR SPIRAL LINES ON INSIDE DIAMETER
	 Incorrectly sharpened oil Insufficient clearance Feed too heavy 	 Wrong type drill Incorrectly sharpened oil Feed too light Web too thick 	 Feed too heavy Clearance too great Too much rake (thin web as described) 	 Too much clearance Feed too light Drill overhang too great Too much rake (thin web as described) 	 Feed too heavy Drill not centered Drill ground off-center
	OVERSIZE HOLES	UNDERSIZE HOLES	HOLES NOT CONCENTRIC	BURR AT CUT-OFF	RAPID DULLING OF DRILL
Common cause	 Drill ground off- center Web too thick Insufficient clearance Feed rate too heavy Point angle too great 	 Dull drill Too much clearance Point angle too small 	 Feed too heavy Spindle speed too slow Drill-off too leaves nib which deflects drill Web too thick Drill speed too heavy at start Drill not mounted on center Drill not sharpened correctly 	 Dull cut-off tool Drill does not pass completely through piece 	 Feed too light Spindle speed too fast Insufficient lubrication from coolant

Tapping/Turning threads

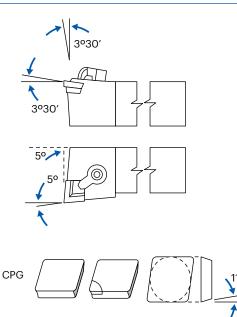

- Use of spiral taps is recommended (not straight).
- Where possible use rigid tap CNC cycles.
- · Check pilot drill size.
- Go for high quality taps where possible.
- Turning threads should be straight forward.
- Tools do not have to be as rigid as metal cutting tools.

Grades for grooving inserts

Stellram grades SP4030 and SP0436 for grooving inserts are PVD-coated grades with a micrograin substrate. They are designed for machining at higher speeds and lower feeds. There grades are ideal for use on stainless steels and ductile materials. See **inch** and **metric** grade descriptions.

Ultra-Mini internal grooving tools

Our Ultra-Mini grooving inserts and tool holders portfolio features replaceable carbide inserts with minimum bores down to 0.157" and groove widths from 0.039" to 0.078". The inserts are designed for internal machining of small diameters and are available in a range of reaches and groove width-tolength ratios. See the full inch and metric Ultra-Mini tool offering. Also see inch and metric Mini-Cut for internal grooving.



Turning

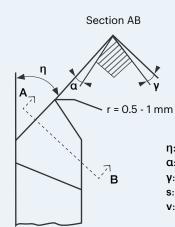
Tip geometry

The continuous chip stream produced when turning and boring many thermoplastics can be handled well using a compressed air powered suction system (directly disposing the swarf into a container), in this way avoiding the chip wrapping around the chunk, the tool or the workpiece.

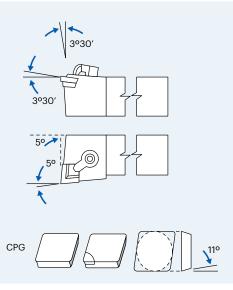
Turning tips

- Machines should have cavernous area for swarf.
- Avoid conveyor belts.
- For tubes you can bore one end and put a blank in to support clamp force of jaws.
- Consider fixed pressure jaws on new machines.
- Crawford collets work very good for plastic.
- Use tip designed for non-ferrous metals such as aluminum or brass.
- Best finish is achieved with 0.8 rad on tips.

- Use hand diamond tools to polish grind marks.
- Sometimes it is worth grinding insert tips on top face to sharpen front edge.
- For improved tolerances, rough out large sections and leave for 24 hours.
- Most diameters will grow so aim for lowest dimension when setting.
- Consider doing capability studies on your machines.
- Use sliding head for small long sections.

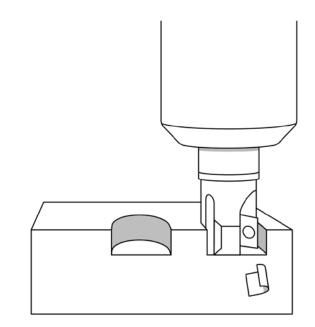

Troub	lesł	nooting	turning
-------	------	---------	---------

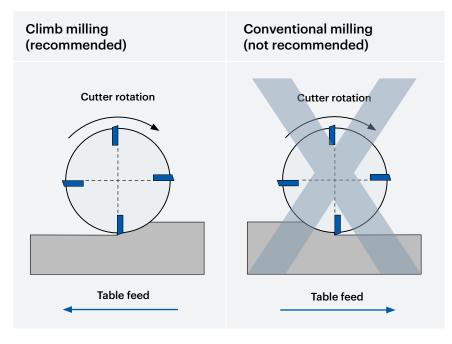
C		Turning & Borin	ng			
DIF	FICULTY	MELTED SURFACE	ROUGH FINISH	BURRS AT EDGE OF CUT	CRACKING OFCHIPPING OF CORNERS	CHATTER
	ommon cause	 Tool dull or heel rubbing Insufficient side clearance Feed rate too slow Spindle speed too fast 	 Feed too heavy Incorrect clearance angles Sharp point on tool (slight nose radius required) Tool not mounted on center 	 No chamfer provided at sharp corners Dull tool Insufficient side clearance Lead angle not provided on tool (tool should ease out of cut gradually, not suddenly) 	 Too much positive rake on tool Tool not eased into cut (tool suddenly hits work) Dull tool Tool mounted below center 	 Too much nose radius on tool Tool not mounted solidly Material not supported properly Depth of cut too heavy


Parting (Cutting-off)

DIFFICULTY	MELTED SUR- FACE	ROUGH FINISH	SPIRAL MARKS	CONCAVE OR CONVEX SURFACES	NIBS OR BURRS AT CUT-OFF POINT	BURNS ON OUT- SIDE DIAMETER
Common cause	 Dull tool Insufficient side clearance Insufficient coolant supply 	 Feed too high Tool improperly sharpened 	 Tool rubs during its retreat Burr on point of tool 	 Point angle not great enough Tool not perpendicular to spindle Tool deflecting Feed tool heavy Tool mounted above or below center 	 Point angle not great enough Dull tool Feed too heavy 	 No chamfer applied before cut-off Dull tool

Data turning

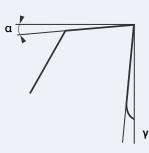

$$\begin{split} &\eta\text{: slide cutting edge angle (°)} \\ &\alpha\text{: slide relief angle (°)} \\ &\gamma\text{: rake angle (°)} \\ &s\text{: feed (mm/rev.)} \\ &v\text{: cutting speed (m/min)} \end{split}$$



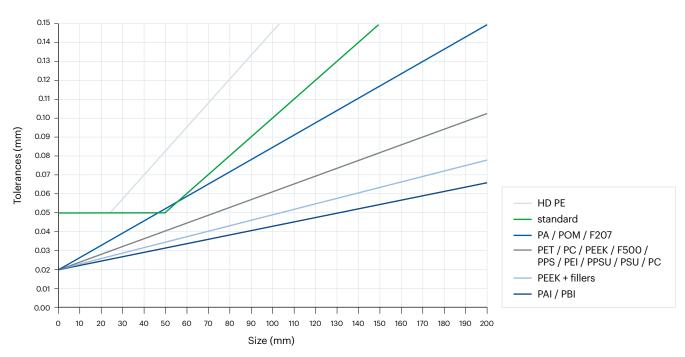
	α	γ	η	S	v	MATERIAL TOOL
Ertalon [™] PA / Nylatron [™] PA, TIVAR [™] UHMW-PE	5 - 15	0 – 10	0 - 45	0.05 - 0.5	200 - 500	HSS steel or carbide
Ertacetal [™] POM, Semitron [™] ESd 225 POM-C	5 - 15	0 – 10	0 - 45	0.05 - 0.5	200 - 500	HSS steel or carbide
Ertalyte [™] PET, Duratron [™] T4203 / 4503 PAI, Ketron [™] 1000 PEEK, Ketron [™] TX PEEK	5 - 15	0 – 10	0 -4 5	0.05 - 0.5	200 - 400	Carbide
Altron™ PC, Sultron [™] PPSU, Duratron [™] U1000 PEI, Sultron [™] PSU	5 - 15	0 – 10	0 - 45	0.05 - 0.4	200 - 400	Carbide
Ertalon [™] 66 GF30 PA6, Duratron [™] T4301 / T4501 / T5530 PAI, Ketron [™] HPV / GF30 / CA30 / VMX PEEK, Techtron [™] HPV PPS, Semitron [™] ESd410C / 520 HR	5 - 15	0 - 10	0 - 45	0.05 - 0.3	100 - 200	Carbide or PCD/CVD
Duratron [™] CU60 PBI, Duratron [™] PI, Fluorosint [™] MT-01 PTFE	5 - 15	3 – 5	0 - 45	0.05 - 0.2	25 - 100	Carbide or PCD/CVD
Fluorosint [™] 135 / 207 / 500 PTFE, Semitron [™] ESd 500HR PTFE	8 - 12	0 – 5	0 - 45	0.05 - 0.4	150 - 400	Carbide

Milling

- Machines should have cavernous area for swarf.
- Use milling cutters with less teeth, higher helix and good clearances.
- Avoid conveyor belts.
- For milling machines consider vacuuming dry chips.
- Use of Vacuum plates recommended for plate parts.
- Parts can be further supported with surrounds on vacuum plate.
- Avoid machining too much on one side of flat plates.
- Even stress out where pockets are required on one side with opposing face grooves.
- Consider using round billets in some cases to overcome small volume restrictions.



Small break, less heat, better finish


Large break, more heat, worse finish

Data milling

α: relief angle (°)
γ: rake angle (°)
s: feed (mm/tooth)
v: cutting speed (m/min)

	α	γ	S	v	MATERIAL TOOL
Ertalon [™] PA / Nylatron [™] PA, TIVAR [™] UHMW-PE	5 – 15	0 – 15	≤ 0.5	200 - 500	HSS steel or carbide
Ertacetal [™] POM, Semitron™ ESd 225 POM-C	5 – 15	0 – 15	≤ 0.5	200 - 400	HSS steel or carbide
Ertalyte [™] PET, Duratron [™] T4203 / 4503 PAI, Ketron [™] 1000 PEEK, Ketron [™] TX PEEK	5 – 15	0 – 15	≤ 0.4	150 - 300	Carbide
Altron™ PC, Sultron [™] PPSU, Duratron [™] U1000 PEI, Sultron [™] PSU	5 – 15	0 – 15	0≤ 0.4	200 - 400	Carbide
Ertalon [™] 66 GF30 PA6, Duratron [™] T4301 / T4501 / T5530 PAI, Ketron [™] HPV / GF30 / CA30 / VMX PEEK, Techtron [™] HPV PPS, Semitron [™] ESd410C / 520 HR	5 - 15	0 - 15	≤ 0.3	75 - 150	Carbide or PCD/CVD
Duratron [™] CU60 PBI, Duratron [™] PI, Fluorosint [™] MT-01 PTFE	5 – 15	0 – 15	≤ 0.15	25 - 100	Carbide or PCD/CVD
Fluorosint [™] 135 / 207 / 500 PTFE, Semitron [™] ESd 500HR PTFE	5 – 15	0 – 15	≤ 0.3	100 - 250	Carbide

Best tolerances at MCG Engineered Solutions

These extra-precise tolerances can require special tooling and challenging machining steps which may lead to extra costs.

SIZE	HDPE	PET/ PC/ PEEK/ Fl500/ PPS/ PEI / PPSU/ PSU/ PC	PA/ POM/ FL207	PEEK WITH FILLERS	PAI / PBI
1	0.05	0.02	0.02	0.02	0.02
5	0.05	0.02	0.02	0.02	0.02
10	0.05	0.02	0.03	0.02	0.02
15	0.05	0.03	0.03	0.02	0.02
20	0.05	0.03	0.03	0.03	0.02
25	0.05	0.03	0.04	0.03	0.03
30	0.06	0.03	0.04	0.03	0.03
35	0.06	0.03	0.04	0.03	0.03
40	0.07	0.04	0.05	0.03	0.03
45	0.08	0.04	0.05	0.03	0.03
50	0.08	0.04	0.05	0.03	0.03
60	0.10	0.04	0.06	0.04	0.03
70	0.11	0.05	0.07	0.04	0.04
80	0.12	0.05	0.07	0.04	0.04
90	0.13	0.06	0.08	0.05	0.04
100	0.15	0.06	0.09	0.05	0.04
110	0.16	0.07	0.09	0.05	0.05
120	0.17	0.07	0.10	0.05	0.05
130	0.18	0.07	0.10	0.06	0.05
140	0.20	0.08	0.11	0.06	0.05
150	0.21	0.08	0.12	0.06	0.05
160	0.22	0.09	0.12	0.07	0.06
170	0.23	0.09	0.13	0.07	0.06
180	0.25	0.09	0.14	0.07	0.06
190	0.26	0.10	0.14	0.08	0.06
200	0.26	0.10	0.15	0.08	0.07

Thread inserts

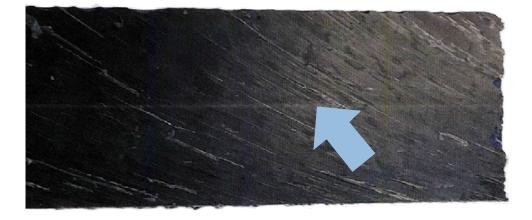
Threaded inserts are not required when machining most of our engineering materials. They are, however, recommended where there are strong vibrations or repeated clamping and unclamping.

Self-tapping Tappex is most popular, however, be cautious!

- If using slotted inserts pre-tab a part of the thread.
- Check that there is no closure after insertion.
- Consider inserts with cross hole to cut.

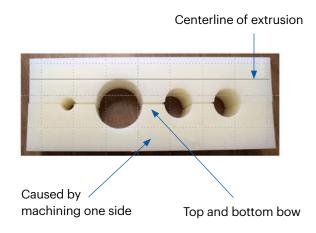
Some can be inserted by heat. This is slower but fine for General Engineering Plastics.

- Use of spiral taps is recommended (not straight).
- Where possible use rigid tap CNC cycles.
- Check pilot drill size.
- Go for high quality taps where possible.
- Turning threads should be straight forward.
- Tools do not have to be as rigid as metal cutting tools.


Deburring

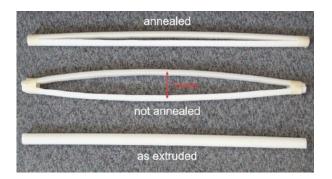
- Sharp knives or rotating hooks are most commonly used. Tool sharpness is crucial.
- Counter sink tools like this are recommended as they do not cut too deep or chatter.
- Hard plastics can slidely be abraded by applying wet and dry process.
- Rotary stones can be effective on some plastics.
- Hot air is good for complex profiles made from General Engineering Plastics.

General rules


- Consider rod as well as plate.
- Machine equally to the centerline.
- If you have to machine pockets perform intermediate steps.

Example

Solutions


- 1. Use cast polyamide plate.
- 2. Cut out the section so that it is symmetrical to the center line of the extrusion (90° to the cut-out).
- 3. Start with thickest plate and move extrusion line away from machined features.
- 4. Machine slots/grooves in opposite face.
- 5. Balanced machining on both sides of the shape's centerline can also help prevent warpage.

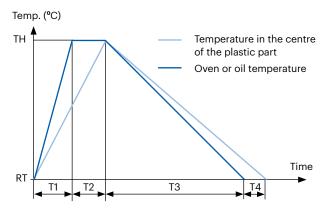
Annealing

Better flatness and tighter tolerances

Extremely close-tolerance parts requiring precision flatness and non-symmetrical contour sometimes require intermediate annealing between machining steps. Improved flatness can be attained by rough machining, annealing and finish machining with a very light cut.

Recommended annealing procedure

- T1: Heat-up time (heating rate: 10-20 °C/h)
- T2: Hold-time depends on the wall thickness: 10 min/mm
- T3: Cool-down time (cooling rate: 5-10 °C/h)
- T4: Additional time required to establish room temperature depends on the wall thickness: 3 min/mm


Annealing tips

When pre-machining, leave enough oversize to allow machining to final sizes after annealing.

Fixturing parts to desired shape or flatness during the entire annealing cycle often proves advantageous.

Do not unfix until parts have completed entire annealing cycle and cooled down slowly to the touch.

Make sure that temperatures are uniform and within \pm 3°C all over the oven or the oil bath at all times during annealing process.

MATERIALS	HEAT-UP	HOLD TEMPERATURE	HOLD-TIME (T2)	COOL DOWN	ENVIRONMENT*
PA	10 – 20°C / h	150°C	10 min / mm	5 – 10°C / h	air, nitrogen or oil
POM	10 – 20°C / h	150°C	10 min / mm	5 – 10°C / h	air, nitrogen or oil
PET	10 – 20°C / h	150°C	10 min / mm	5 – 10°C / h	air, nitrogen or oil
PE- (U)HMW	10 – 20°C / h	120°C	10 min / mm	5 – 10°C / h	air, nitrogen or oil
PC	10 – 20°C / h	130°C	10 min / mm	5 – 10°C / h	air or nitrogen
PEEK	10 – 20°C / h	250°C	10 min / mm	5 – 10°C / h	air or nitrogen
PPS	10 – 20°C / h	200°C	10 min / mm	5 – 10°C / h	air or nitrogen
PPSU	10 – 20°C / h	200°C	10 min / mm	5 – 10°C / h	air or nitrogen
PEI	10 – 20°C / h	200°C	10 min / mm	5 – 10°C / h	air or nitrogen
PSU	10 – 20°C / h	170°C	10 min / mm	5 – 10°C / h	air or nitrogen

Summary

When machining MCG stock shapes remember...

- Thermal expansion rate is up to 10x higher with plastics than metals.
- Plastics lose heat more slowly than metals, so avoid localized overheating.
- Softening (and melting) temperatures of plastics are much lower than metals.
- Plastics are much more elastic than metals.

Because of these significant differences you may wish to experiment with fixtures, tool materials, angles, speeds and feed rates to obtain optimum results.

Get in touch

Contact.

contact.mcam@mcgc.com

Europe

Mitsubishi Chemical Advanced Materials NV Galgenveldstraat 12 8700 Tielt, Belgium

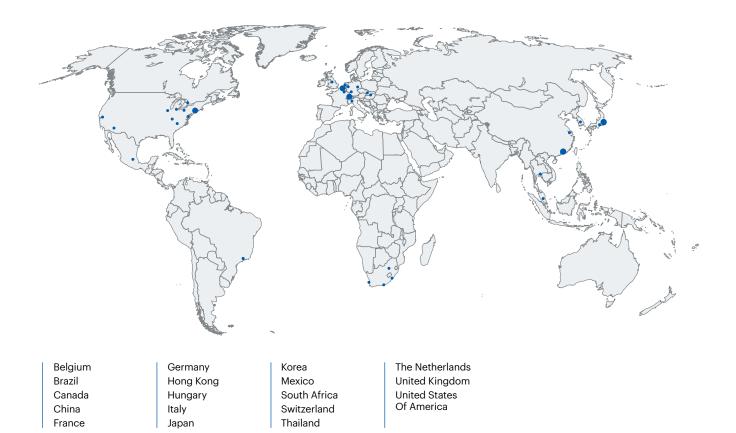
Tel: +32 51 42 35 11

www.mcam.com

Visit.

www.mcam.com/en/contact

North America


Mitsubishi Chemical Advanced Materials Inc. 2120 Fairmont Avenue PO Box 14235 — Reading, PA 19612-4235

Tel: +1 610 320 6600

Asia-Pacific

Mitsubishi Chemical Advanced Materials Asia Pacific Ltd. Unit 7B, 35/F, Cable TV Tower, 9 Hoi Shing Road, Tsuen Wan, Hong Kong

Tel: +852 2470 26 83

All statements, technical information, recommendations, and advice are for informational purposes only and are not intended and should not be construed as a warranty of any type or term of sale. The reader, however, is cautioned that Mitsubishi Chemical Advanced Materials does not guarantee the accuracy or completeness of this information and it is the customer's responsibility to test and assess the suitability of the products of Mitsubishi Chemical Advanced Materials in any given application or for use in a finished device.

Acetron[™], Altron[™], Duratron[™], Ertacetal[™], Ertalon[™], Ertalyte[™], Flextron[™], Fluorosint[™], Ketron[™], Nylatron[™], Sultron[™], QuickSilver[™], Semitron[™], Techtron[™] and TIVAR[™] are registered trademarks of the Mitsubishi Chemical Advanced Materials group. Design and content created by Mitsubishi Chemical Advanced Materials and protected by copyright law. Copyright © 2024 by Mitsubishi Chemical Advanced Materials. All rights reserved.