

Semiconductor & Electronics

Vacuum Chamber Solutions

World's broadest portfolio of polymer solutions for use in vacuum chamber applications

Typical process tools: Etch, CVD, PVD & ion implant

Material Solutions & key properties

Ketron® 1000 PEEK

For use in lower power, lower heat (300°F) or indirect plasma chamber applications such as wafer mobility.

Duratron® T4203 PAI

For use in medium power, medium heat (500°F) applications or indirect chamber applications in presence of Oxygen plasma.

Duratron® CU60 PBI

For use in high power, high heat (750°F) applications or indirect chamber applications when in the presence of Oxygen plasma.

Semitron® MPR1000

For use in high power, medium heat (520°F)applications. Best in class when in presence of Oxygen plasma.

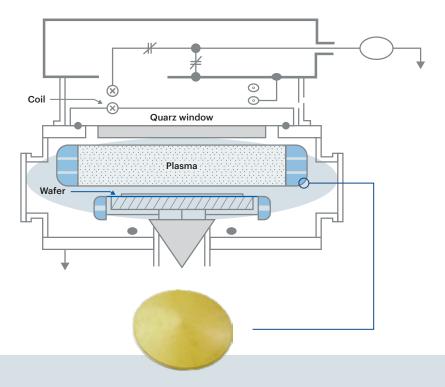
General trends

Key Considerations

- Increasing energy in plasma chambers
- More aggressive plasma chemistries, introduction of Oxygen into the chambers
- Pinpoint material selection on a per application basis to maximize "cost vs. performance"
- Replacement of polyimide for reduced cost & increased performance
- Careful use of ceramics & quartz due to cost & breakage
- · Increased requirements for ionic purity due to reduced node size

Typical Applications

• Screws & pins

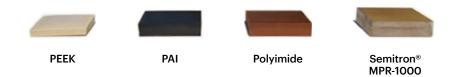

Shower heads

- Clamp & trench rings
- Valve housings

- Various etch & CVD parts

Competitive Quartz vs. Semitron® MPR-1000

Competitive Quartz is much more brittle than Semitron[®] MPR-1000 and is often chipping in vacuum chambers.

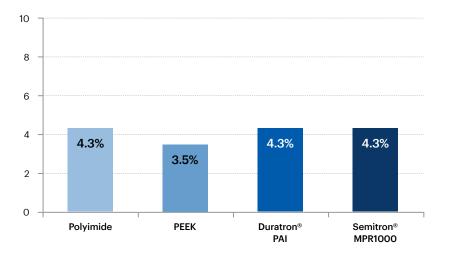


Introducing Semitron® MPR1000

Semitron[®] MPR1000 was developed to provide engineers with a viable polymer-based option when confronted with the increasing demands in vacuum plasma based chamber design due to use of Oxygen to clean the chamber and the rapidly increasing electrode power.

Product features

- Excellent plasma resistance in Oxygen plasma, approaches quartz
- 12-25X* better than polyimide in Oxygen plasma
- · Excellent chip resistance, durability & machinability compared to quartz
- Lowest overall cost of any polymer solution
- Excellent ionic purity

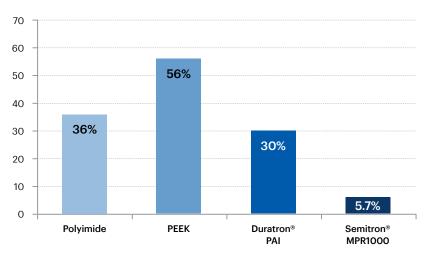


Percent weight loss in Cf4 plasma - low energy

- Most advanced engineering plastics perform similar in freon plasma gases
- The mode of degradation is mechanical erosion, a function of surface hardness & type of solid, crystalline vs amorphous

Chamber conditions

• 1KW • CF 1200 sccm • 0.32 Torr • 50 hours



Percent weight loss In O2 plasma - 2kw

- Advanced engineering plastics mode of degradation in Oxygen plasma is catastrophic oxidation
- Semitron[®] MPR1000 was developed to withstand the typical erosion experienced in Oxygen plasma chambers
- Semitron® MPR1000 displays 10X better results than PEEK and 6X better results than polyimide in a 2KW Oxygen plasma chamber and up to 25X better results than polyimide at 2.5KW Oxygen plasma

Chamber conditions

+ 2KW + O2 1200 sccm + 0.30 Torr + 50 hours + 13.56 MHz

Ionic purity data

	Aluminum (Al)	Barium (Ba)	Calcium (C)	Cromium (Cr)	Copper (Cu)	Iron (Fe)	Lead (Pb)	Lithium (Li)	Magnesium (Mg)	Manganese (Mn)	Nickel (Ni)	Potassium (K)	Sodium (Na)	Strontium (Sr)	Titanium (Ti)	Zinc (Zn)
Semitron® MPR1000	0.14	0.07	2.8	2.6	0.14	2.3	0	0	0.3	0.11	0.36	0.77	4.4	0.04	0.12	0
Ketron [®] PEEK	0.38	0.02	8	0.49	0.2	6	0.005	0.005	0.8	0.2	0.42	1.6	480	0.06	0.18	0.15
Standard Polyimide	0.47	0.05	0.01	0.01	0.05	0.36	0.05	0.05	0.28	0.02	0.02	0.13	0.44	0.05	0.05	0.02
Semitron [®] MPR1000	0.14	0.07	2.8	2.6	0.14	2.3	0	0	0.3	0.11	0.36	0.77	4.4	0.04	0.12	0
Standard Polyimide	17.68	1.88	0.38	0.38	1.88	13.55	1.88	1.88	10.54	0.75	0.75	4.89	16.56	1.88	1.88	0.75

by total digestion Adjusted for mass loss during erosion 2.5 KW • 2000 sccm • O2

Material comparison guide

		Standard Polyimide	Duratron® CU60 PBI	Ketron◎ 1000 PEEK	Semitron® MPR1000	Duratron◎ T4203 PAI	
Mechanical properties							
Tensile strength (psi)	D638	12,500	16,000	16,000	17,000	20,000	
Tensile modulus (psi)	D638	-	850,000	630,000	1,200,000	600,000	
Flexural strength (psi)	D790	16,000	32,000	25,000	24,000	24,000	
Flexural modulus (psi)	D790	450,000	950,000	600,000	1,050,000	600,000	
Hardness rockwell	D785	M82	M125	M100	M106	M120	
Moisture absorption 24hrs @73°F (%)	D570 ⁽²⁾	0.24	0.40	0.10	0.28	0.40	
Moisture absorption @ saturation (%)	D570 ⁽²⁾	1.5	5.0	0.5	3.4	1.7	
Tribological properties							
CLTE (in./in./°F)	E-831 (TMA)	3.0 x 10-5	1.3 x 10-5	2.6 x 10-5	1.5 x 10-5	1.7 x 10-⁵	
Heat deflection temperature @66psi (°F)	D648	632	800	320	534	532	
Electrical properties							
Dielectric constant @1Hz	D150	4.20	3.20	3.30	3.68	4.20	
Dissipation factor @1Hz	D150	0.0034	0.0030	0.0030	0.0080	0.0260	
Dielectric strength	D149	560	550	480	570	580	
Ionic purity	-	Excellent	Good	Fair	Excellent	Good	

Data represents our estimated maximum long-term service temperature based on practical field experience. (2) Specimens: 1/8" thick x 2" diameter or square.
(3) Estimated rating based on available data. The UL-94 Test is a laboratory test and does not relate to actual fire hazard.

Get in touch

Contact.	Visit.
contact.mcam@mcgc.com	www.mcam.com/en/contact

Europe	North America	Asia-Pacific
Mitsubishi Chemical	Mitsubishi Chemical	Mitsubishi Chemical
Advanced Materials NV	Advanced Materials Inc.	Advanced Materials Asia Pacific Ltd.
Galgenveldstraat 12	2120 Fairmont Avenue	Unit 7B, 35/F, Cable TV Tower,
8700 Tielt,	PO Box 14235 — Reading,	9 Hoi Shing Road,
Belgium	PA 19612-4235	Tsuen Wan, Hong Kong
Tel: +32 51 42 35 11	Tel: +1 610 320 6600	Tel: +852 2470 26 83

www.mcam.com

All statements, technical information
and recommendations contained in this
publication are presented in good faith
and are, as a rule, based upon tests and
such tests are believed to be reliable and
practical field experience. The reader,
however, is cautioned, that MitsubishiChemical Advanced Materials does not
guarantee the accuracy or completeness
of this information and it is the customer's
responsibility to determine the suitability of
Mitsubishi Chemical Advanced Materials'
products in any given application.

Duratron[®], Ketron[®], Semitron[®] and Kyron[®] are registered trademarks of the Mitsubishi Chemical Advanced Materials group of companies.

Design and content created by Mitsubishi Chemical Advanced Materials and are protected by copyright law. Copyright © 2023 Mitsubishi Chemical Advanced Materials. All rights reserved.